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Introduction: Arc-Jet Testing, 10-MW TP3 Facility

•  Arc-jets provide the primary means to test the performance of various types of 
thermal protection systems (TPS) in an aerothermodynamic heating environment

•  The Aerodynamic Heating Facility (AHF) at NASA Ames Research Center was 
recently upgraded to run an arc-heater, named TP3
–  10-MW constricted arc-heater
–  Formerly known as TP2 when operated at NASA Johnson Space Center 
–  Currently operates with a test gas mixture of nitrogen and oxygen 
–  Testing capability with a N2-CO2 mixture will be added in the near future (Fall 2016)
–  Able to simulate various heating profiles in time representative of hypersonic flight

Stagnation coupon test Wedge test TP3 arc-heater/nozzle sketch
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Objectives and Scope
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•  Present arc-jet flow characterization data obtained in three test series in the TP3 7.5-inch 
conical nozzle
–  A flight heating profile was simulated in the arc-jet stream using 10.16-cm diameter flat-faced 

models (test articles and calorimeters), AHF 307
–  The heating profile was achieved through 7 steps (6 arc-heater conditions, with step 1 condition 

repeated as step 6 condition), AHF 307
–  Six conditions cover a wide range of facility parameters
–  For each step of the heating profile, surveys of the arc-jet test flow with the pitot and heat flux 

probes were performed for arc-jet flow characterization (AHF 307, AHF 318, AHF 320)
–  9.1-mm diameter sphere-cone probes with null-point heat flux gages  (AHF 307)
–  15.9-mm diameter hemisphere probes with Gardon gages (AHF 318, AHF 320)

•  Computational fluid dynamics simulations are performed to provide estimates of the arc-
jet test environment parameters
–  Centerline total enthalpy 
–  Comparisons with the pitot pressure and heat flux survey data



Pitot Pressure and Heat Flux Survey Probes 
TP3 7.5-Inch Nozzle Flow 
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9.1-mm sphere-cone probe, null-point gage 

15.9-mm hemisphere probe, Gardon gage AHF 320 test

AHF 307 test



Computational Approach

•  CFD analysis includes simulation of nonequilibrium flow in the arc-jet facility (the 
nozzle, test box, over the model)

•  Prescribe flow profiles with chemical equilibrium composition at the nozzle entrance; 
Centerline total enthalpy is set to match the measured slug calorimeter data

•  2-D axisymmetric Navier-Stokes equations with nonequilibrium processes
•  Thermochemical model for arc-jet flow

–  Five or six chemical species: N2, O2, NO, N, O, (Ar, if present)
–  Two-temperature model (Park):  T -translational-rotational, Tv -vibrational-electronic

•  Data-Parallel Line Relaxation Method - DPLR Code
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Presentation of Results 

•  One stagnation model simulation example- Estimate of centerline total enthalpy based on facility and calorimeter data

•  Comparisons of computations with the pitot pressure and heat flux survey data
- TP3-AHF 307, AHF 318 and AHF 320 survey data- Two different set of probes- The heating profile conditions: step 1 thru step 7 (six conditions covering a wide range of 

facility parameters)- Repeatability of the survey data are given in the paper



Example: Computed Nozzle Centerline and Stagnation Streamline Profiles 
Flat-Faced Model (D = 10.16 cm, rc/D = 3/32), CWFC 

 TP3 7.5-Inch Nozzle Flow Simulation:      = 190 g/s, hob = 17.6 MJ/kg, hocl = 28.8 MJ/kg, nonuniform profiles

•  Flow is in chemical and vibrational nonequilibrium
•  Oxygen remains fully dissociated except in the boundary layer (and shear layer) 
•  Nitrogen is partially dissociated
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Example Case: Prescribed Nozzle Inlet Profiles  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 190 g/s, hob = 17.6 MJ/kg, hocl = 28.8 MJ/kg, nonuniform profiles !m
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•  Uniform pressure and parabolic enthalpy profiles are specified at the nozzle inlet 
•  Species concentrations and other flow properties are calculated from thermochemical 

equilibrium relations



Example: Computed Model Surface Heat Flux and Pressure  
 Flat-Faced Model (D = 10.16 cm, rc/D = 3/32), CWFC 

 TP3 7.5-Inch Nozzle Flow Simulation:      = 190 g/s, hob = 17.6 MJ/kg, hocl = 28.8 MJ/kg, nonuniform profiles 

•  Averaged calorimeter data from AHF 307 runs 11-2 and 12-2: 388 W/cm2 and 14.75 kPa
•  Centerline total enthalpy is determined to reproduce the measured slug calorimeter data
•  At the nozzle inlet: parabolic enthalpy profile, and the mass flux profile is based on pressure and 

enthalpy

!m
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Comparisons of Computations with Pitot Pressure and Heat 
Flux Survey Data
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Test Series: 
AHF 307 

I 
(A) 

V 
(V) 

 
(g/s) 

pmidc 
(kPa) 

qs 
(W/cm2) 

ps 
(kPa) 

hob   
(MJ/kg) 

CFD 

hocl   
(MJ/kg) 

CFD 

qHWFC 
(W/cm2) 

CFD 

Cond 
No. 

Runs 14-1–35-1 262 1264 25 25.4 58.6 1.74 11.8 13.8 51.5 1 
Runs 11-2, 12-2 1113 3401 190 220 388 14.8 17.6 28.8 349 2 
 Runs 8-1, 9-1 1762 5187 501 558 730 36.0 16.4 34.1 497 3 

Runs 6-1, 7-1 1214 3946 310 311 335 21.5 13.6 21.9 292 4 
Runs 3-2, 4-1 419 1683 40 43 118 3.3 15.4 19.6 104 5 
Runs 3-3, 4-2 716 3681 310 251 114 17.0 7.5 9.4 89 6 

AHF 320           
Runs 5-3, 6-3 1756 4861 500 516 593 33.5 13.9 29.9 N/A 3 
Runs 3-4, 4-4 1204 3637 310 293 266 19.3 10.3 18.8 N/A 4 

Conditions 4 and 6 include cold-gas injection at the plenum, 20% and 28% of the total mass flow rate, respectively.  

m

•  Pitot pressure and heat flux surveys were performed at separate arc-jet runs at the same 
nominal arc-heater conditions (current and mass flow rate)

•  Six conditions cover a wide range of facility parameters: arc current varies from 262 A to 1762 A, 
and total mass flow rate from 24 g/s to 501 g/s

•  Two conditions with cold-gas N2 injection at the arc-heater plenum



Comparisons of Computations with Survey Data (step 1, AHF 307)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 25 g/s, hob = 11.8 MJ/kg, hocl = 13.8 MJ/kg, pbox = 0.05 torr  

•  This case represents a facility condition at an extremely low mass flow rate, moderate enthalpy 
and without plenum gas injection

•  The pitot pressure data show an incomplete recovery to the test box pressure and a larger core than 
computations (probes were moving too fast to equilibrate at these lower pressures); and it is not 
symmetric

•  Heat flux surveys show a more peaked distribution than computations

!m
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Comparisons of Computations with Survey Data (step 1, AHF 320)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 25 g/s, hob = 11.8 MJ/kg, hocl = 13.8 MJ/kg, pbox = 0.7 torr  !m
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•  Pitot probe speed is too high when probes are outside the core flow
•  15.9-mm probe measurements are sensitive to the probe speed, especially at lower pressures
•  The heat flux data show an asymmetric distribution (also more peaked than computations)
•  Note that the test box pressure for AHF 320 is higher than for AHF 307



Repeatability of 15.9-mm Probe Survey Data (step 1, AHF 320)  
 TP3 7.5-Inch Nozzle Flow:      = 25 g/s, I =  279 A, pmidc = 27.5 kPa, pbox = 0.7-0.8 torr  

•  The pitot probe data are reasonably repeatable
•  The heat flux data show an asymmetric distribution, not very repeatable
•  Quantitative heat flux values from the Gardon gage probe are not used: normalized distribution is used 

for comparisons
•  Approximate probe dwell times: 50 s for Runs 15-1 and 16-1, and 1.2 s for Run 11-1, 12 s for Run 12-1

!m
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Effects of Test Box Pressure on Computed Flowfield and Survey Data 
TP3 7.5-Inch Nozzle Flow Simulation:      = 25 g/s, hob = 11.8 MJ/kg, hocl = 13.8 MJ/kg

pbox  = 0.05 torr

pbox  = 0.7 torr

!m
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Comparisons of Computations with Survey Data (step 2, AHF 307)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 190 g/s, hob = 17.6 MJ/kg, hocl = 28.8 MJ/kg, pbox = 0.4 torr  

•  This case represents a facility condition at an intermediate mass flow rate, relatively high 
enthalpy and without plenum gas injection

•  CFD simulations reproduce the survey data quite well

!m
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Comparisons of Computations with Survey Data (step 2, AHF 320)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 190 g/s, hob = 17.6 MJ/kg, hocl = 28.8 MJ/kg, pbox = 0.4 torr  

•  The heat flux survey data show a highly peaked distribution (like a triangle), much more than 
computations

•  Note the feature in the pitot pressure data near the nozzle centerline: possibly weak wave interactions

!m
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Repeatability of 15.9-mm Probe Survey Data (step 2, AHF 320)  
 TP3 7.5-Inch Nozzle Flow:      = 190 g/s, I =  1110 A, pmidc = 205 kPa

•  The pitot probe data are repeatable
•  The heat flux data show a symmetric distribution (approximately), not repeatable
•  Probe dwell times: 15 s and 30 s for Runs 14-2 and 15-2, and 1.6 s and 7 s for Runs 11-2 and 12-2

!m
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Comparisons of Computations with Survey Data (step 3, AHF 307)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 501 g/s, hob = 16.4 MJ/kg, hocl = 34.1 MJ/kg, pbox = 1 torr  

•  This case represents a facility condition close to the facility max (mass flow rate and current) at 
high enthalpy and without plenum gas injection

•  Pitot surveys show interesting features: somewhat higher pressure region near the nozzle 
centerline, possibly as a result of some disturbances in the nozzle flowfield; slightly asymmetric 
(skews to the west)

•  Estimated total enthalpy is quite high for this facility

!m
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Comparisons of Computations with Survey Data (step 3, AHF 320)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 500 g/s, hob = 13.9 MJ/kg, hocl = 29.9 MJ/kg, pbox = 1 torr  

•  CFD simulations are based on AHF 320 calibration data
•  In the pitot surveys, there is a higher pressure region near the nozzle centerline (similar to the earlier 

surveys, but it is asymmetric); Although this feature could be explained by geometric imperfections in 
the nozzle walls, the fact that it does not appear in all surveys at other conditions requires further study

•  Asymmetry in the heating profile is confirmed, skewed to the west side

!m
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Comparisons of Computations with Survey Data (step 4, AHF 307)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 310 g/s, hob = 13.6 MJ/kg, hocl = 21.9 MJ/kg, pbox = 1 torr  !m

•  This case represents a facility condition at relatively high mass flow rate and moderately 
high enthalpy, and with cold gas injection of N2 at the plenum (20% of total mass flow rate)

•  The pitot survey shows a somewhat higher pressure region near the nozzle centerline
•  Both pitot and heat flux survey data are repeatable and approximately symmetric
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Comparisons of Computations with Survey Data (step 4, AHF 318)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 310 g/s, hob = 13.6 MJ/kg, hocl = 21.9 MJ/kg, pbox = 1 torr  !m

•  The pitot survey shows a somewhat higher pressure region near the nozzle centerline (similar 
to AHF 307 survey data)

•  Both pitot and heat flux survey data are repeatable and approximately symmetric
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Comparisons of Computations with Survey Data (step 4, AHF 320)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 310 g/s, hob = 10.3 MJ/kg, hocl = 18.8 MJ/kg, pbox = 1 torr  !m
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•  CFD simulations are based on AHF 320 calibration data
•  Both pitot and heat flow survey data are approximately symmetric



Comparisons of Computations with Survey Data (step 5, AHF 307)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 40 g/s, hob = 15.4 MJ/kg, hocl = 19.6 MJ/kg, pbox = 0.1 torr  !m

•  This case represents a facility condition at relatively low mass flow rate and moderately high 
enthalpy, and without cold gas injection at the plenum

•  Both pitot and heat flux survey data are not symmetric while the sweep data are repeatable in both 
sweep directions

•  There is an incomplete recovery in the pitot pressure data to the test box pressure
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Comparisons of Computations with Survey Data (step 5, AHF 320)  
 TP3 7.5-Inch Nozzle Flow Simulation:      = 40 g/s, hob = 15.4 MJ/kg, hocl = 19.6 MJ/kg, pbox = 0.7 torr  !m

•  Both pitot and heat flux survey data are not symmetric while the sweep data are reasonably 
repeatable in both sweep directions

•  The asymmetric feature skewing to the east side is confirmed (west side in step 3 condition)
•  The heat flux data show a more peaked distribution than computations
•  Test box pressure for AHF 320 is much higher than for AHF 307
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Comparisons of Computations with Survey Data (step 7, AHF 307)   
 TP3 7.5-Inch Nozzle Flow Simulation:     = 310 g/s, hob = 7.5 MJ/kg, hocl = 9.4 MJ/kg, pbox = 0.5-2 torr  !m

•  This case represents a facility condition at relatively high mass flow rate and low enthalpy, and 
with cold gas injection of N2 at the plenum (28% of total mass flow rate) 

•  The pitot pressure data were obtained at pbox = 2 torr,  and the NP heat flux data at pbox = 0.5 torr
•  The pitot survey appears to indicate some wave interactions near the nozzle centerline
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Comparisons of Computations with Survey Data (step 7, AHF 318)   
 TP3 7.5-Inch Nozzle Flow Simulation:     = 310 g/s, hob = 7.5 MJ/kg, hocl = 9.4 MJ/kg, pbox = 0.5 torr  !m

•  Both pitot and heat flux survey data are repeatable and approximately symmetric
•  The pitot survey shows similar wave interactions near the nozzle centerline (observed in AHF 307)
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Comparisons of Computations with Survey Data (step 7, AHF 320)   
 TP3 7.5-Inch Nozzle Flow Simulation:     = 310 g/s, hob = 7.5 MJ/kg, hocl = 9.4 MJ/kg, pbox = 0.5 torr  !m

•  The heat flux data show a remarkably flat distribution, considering the cold gas injection at the plenum  
•  The pitot survey shows similar wave interactions near the nozzle centerline (observed in AHF 307 and 

AHF 318)
•  Relatively uniform heating distribution is remarkable (in contrast to our experience with other arc-jet 

facilities)
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Concluding Remarks and Future Work
•  The survey data obtained using two different sets of probes at six arc-heater conditions in the TP3 

7.5-inch nozzle provide assessment of the flow uniformity and valuable data for the arc-jet flow 
characterization
–  Six conditions cover a wide range of facility parameters: arc current varies from 262 A to 1762 A, 

and total mass flow rate from 24 g/s to 501 g/s
–  Two of these conditions include cold-gas N2 injection at the arc-heater plenum

•  The probe survey data clearly show that the arc-jet test flow in the TP3 facility is not uniform at most 
conditions, and the extent of non-uniformity is highly dependent on various arc-jet parameters such as 
arc current, mass flow rate (or arc heater pressure), and the amount of cold-gas injection at the 
plenum
–  Not even axisymmetric at the extremes of the facility operating envelope
–  Effects of the observed asymmetric flows on the calorimeter measurements and their 

interpretation (CFD-estimated centerline total enthalpy values) remain to be investigated 

•  CFD analysis is an essential part of arc-jet flow characterization studies
–  Computations show reasonably good agreement with the experimental measurements except at 

the extreme low pressure conditions of the facility envelope
–  Pitot pressure and normalized heating distributions from two sets of survey probes

•  Several additional challenges remain in arc-jet flow calibration using multiple heat flux measuring 
devices to provide heat flux datasets consistent with each other: calibration of the null-point and 
Gardon gages, and reexamination of methodologies to infer the heat flux for these measurement 
devices
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